
The Django web development framework
for the Python-aware

Bill Freeman

PySIG NH

September 23, 2010

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 1 / 18

Introduction

Django is a web development framework. While most parts are optional,
this means that it:

Accepts requests (typically HTTP GET and POST)

Garners information from URLs

Interacts with a database (CRUD)

Composes a response (templates, Python)

Does session management

Helps with pesky details, e.g.; CSRF

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 2 / 18

Incoming

“Front-end” Server

Django’s native client-facing interface is WSGI (Web Services
Gateway Interface).

Django includes a “development” server that is convenient for, well,
development, connecting HTTP to WSGI (with a few extras).

In deployment, however, one should use a server like Apache or
NGiNX to meet the TCP/IP interface, do SSL, and to serve truly
static files such as CSS, JS, images, PDFs, etc.

Now that mod python is dead, mod wsgi is pretty much the universal
answer for connecting the front-end server and Django.

There are WSGI interfaces for other front ends, or connectors that
hide WSGI under the hood.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 3 / 18

Incoming

Request Path Parsing

Django parses the request URL’s “path” using a “urlconf”.

A urlconf has a list (or equivalent) of “urlpattern” objects. It
applies each urlpattern in turn to the path the urlconf was given
against, stopping when one succeeds, returning its result. (If no
urlpattern succeeds, the urlconf fails, see below.)

A urlpattern has a regular expression (regex). If a the regex of a
urlpattern doesn’t match the path string, the urlpattern fails.

If the regex matches then:

If the urlpattern has a view function then the urlpattern succeeds,
returning the view function and maybe other stuff.
Otherwise the urlpattern has a sub-urlconf. The urlpattern removes
the portion of the path that it matched and applies its urlconf to the
remainder. The urlpattern succeeds if its urlconf does.

If the top level urlconf fails, Django returns a 404 response (page
not found).

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 4 / 18

Incoming

Gathering View Function Arguments

A urlpattern’s regex may include “groups” which are used as arguments
to the view function.

Unnamed groups are used as positional arguments:

r’digest/month/(20\d\d)-(\d\d?)/’

would match ’digest/month/2010-9/’ and would collect ’2010’, and ’9’ as
positional arguments.

Named groups are used as keyword arguments:

r’digest/month/(?P<year>20\d\d)-(?P<month>\d\d?)/’

would match the same string, but pass ’2010’ as the year argument, and
’9’ as month.

Each urlpattern may also have a dictionary of extra keyword arguments.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 5 / 18

Presentation

View functions

A view function is an ordinary Python function.

An “HttpRequest” object is always passed as the first positional
argument.

The function may accept additional arguments. Any that are not
optional must be supplied by means of the urlpatterns involved in
choosing the view function.

The HttpRequest object has, among other things:

A “method” attribute, identifying the kind of HTTP request being
processed.
A “GET” attribute, a mapping of query parameter names to values.
A “POST” attribute, a mapping of POST parameter names to values.

A view function typically returns an HttpResponse object. It will be
returned to the front end for transmission to the client. HttpRedirect
objects are another possibility.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 6 / 18

Presentation

Templates, variable references, context variables

Django templates are mostly HTML.

Special constructs begin with {{, {% or {#, and end, respectively,
with }}, %} or #} (variable references, tags, and comments). The
beginning and ending sequences must be on the same line.

Variable reference inserts something into the document:

{{ foo }}
Inserts unicode() of the value of the foo “context variable”.

Most “context variables” are provided by the code that wants the
template rendered.

The variable can be de-referenced using dot:

{{ foo.bar }}
Gets the bar attribute of foo, calling if it is a method, or gets foo[’bar’] if
foo is a mapping. If foo were a list, foo.1 would get its second element.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 7 / 18

Presentation

Templates — filters

Variables can be “filter”ed:

{{ foo.bar|upper }}
Makes the result upper case. You can use multiple filters in a pipeline.

Some filters can take an argument:

{{ foo.start date|date:”D d M Y” }}
Foo’s attribute, presumably a date or datetime, is formatted as you like.

Normally variable references are escaped to prevent inadvertent
insertion of HTML markup from the variable value:

{{ foo.bar|upper|safe }}
Some filters mark their result to avoid the escaping. safe is one such, and
that is its only purpose.

You can write your own filters in Python.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 8 / 18

Presentation

Templates — tags

Tags MAY provide text output:

{% now “D d M Y” %}
Shows today’s date.

Tags MAY be paired with a closing tag:

{% for f in foo.fields %}{{ f.name }}: {{ f.value }}
{% endfor %}
Iterates foo.fields, as you might expect. Any previous value of the context
variable f is restored after the endfor. You can access the loop counter in
various ways using the “forloop” context variable. The boolean
“forloop.last”, plus the “if” tag, could be used to eliminate the

HTML tag the last time through.

Tags can take a variable number of arguments.

You can write your own tags in Python. It is, however, harder than
writing filters.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 9 / 18

Presentation

Templates using other templates

The include tag does what it sounds like, inserting the rendered
output of another template into the including template. (This
actually is much less used that the extends tag, see below.)

The extends tag and block tag implement “template inheritance”.

The extends tag must be first in a template, and can occur only
once. The base template (the one mentioned in the extends tag) is
rendered instead of the derived template (the one using extends).

A base template can also use the extends tag, to any depth.

The block tag takes a name argument, and, with the endblock tag,
defines a “named block”.

The content of a named block in a derived template replaces the
content of any block with the same name in its chain of bases.

“base” templates can provide site-wide common features. Templates
a level up can provide section specific differences. Top level templates
implement the final page type details.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 10 / 18

Presentation

Form support

Django aids in the production of HTML forms.

You create a python sub-class of Django “Form” class.

Most class attributes are instances of Django “form.Field” classes.

A class instance can render itself as INPUT and SELECT tags.

Make the instance a template “context” variable, say form.

The template says, for example, (within a FORM tag):
{{ form.as p }}

A dictionary of initial field values can be provided at instantiation.

When the form is submitted, the view function passes request.POST
(or request.GET) to a new instantiation of the class, and then says:

if(form.is valid()):

Each Field knows how to validate the submitted data. If a field is
invalid, and the form instance is rendered again, an error string is
shown near the INPUT.

A valid form provides a dictionary of submitted values for the view
function to use.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 11 / 18

Object Relational Mapper

Models

“Model” classes correspond to database tables.

Model class instances correspond to database rows.

Many model class attributes correspond to database columns.

Corresponding model class instance attributes hold python objects
representing database values.

Model Field attributes, along with the Django database back end
code, know how to convert between the python representation of
values and the SQL representation of those values.

Model Fields validate instance values before saving an instance to the
database, when the “save” method of the Model instance is called.

Model Fields include support for foreign key (many to one) and many
to many relationships (the m2m join tables are handled by Django).

Model Forms are Forms that use Model classes to define the form’s
fields, can be initialized from a Model instance, and know how to
transfer form field data to Model instance fields.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 12 / 18

Object Relational Mapper

Querysets

A “queryset” remembers selection criteria for a given Model.

No database query is made until a queryset is “evaluated”.

A common “evaluation” is to iterate over a queryset which generates
a series of Model instances.

A queryset can be refined, which really returns a new queryset with
both the original queryset’s selection criteria, and the “refinements”.

Selection criteria are specified using keyword arguments to the
queryset methods “filter”, “exclude”, or “get”.

The name of the keyword argument provides the name of the field to
be tested, and, optionally, what kind of test (if other than equality) to
make against the value of the keyword argument.

ModelName.objects.filter(end date gte=datetime.datetime.now())

Selects rows, which, according to their end date column, have already
ended.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 13 / 18

Things you don’t have to write for yourself.

Admin

django.contrib.admin is a “plug-able app”:

Easy to generate a section of an admin interface from a model.

Can create, delete, edit and search model instances/table rows
without writing your own urlpattern, view function, forms, and
templates.

Easy to customize what is shown, what is editable, how it is grouped,
and what is searchable.

There are many other plug-able apps, including CMS, blog, wiki, tagging,
UI enhancing, etc. Some, like admin, are bundled with Django, but nearly
all are available using pip or easy install. You may still want to customize
one, or write your own to get exactly the performance you want: this is
Open Source, so have at it.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 14 / 18

Odds and ends

Middleware

Settings specifies a “stack” (sequence, really) of middleware classes.

The classes, in order, get a crack at the request before url parsing.
They can modify the request object, gather information, return a
response, including a redirect, or do nothing if this request isn’t
interesting.

The classes get a second crack after url parsing, but before the view
function is called. (There is middleware, for example, that checks
whether the view function has the attribute applied by the
“login required” decorator.)

When a view function returns a response, the middleware, in reverse
order (popping the stack?) gets a crack at the response, before it is
returned to the front end, on the way to the client.

If, instead, the view function raises an exception, the middleware
gets, in reverse order, a crack at the exception.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 15 / 18

Odds and ends

Template Context Processors

A view function may choose to pass a “request context” to provide
the values of template variables for a template rendering.

RequestContext, which creates a request context object, is passed the
request object, plus any explicit context variable definitions the view
function wishes to provide.

The RequestContext constructor offers the request object to each
template context processor listed in settings.py.

Any of the template context processors can return a dictionary of
additional context variable definitions.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 16 / 18

Odds and ends

Not covered

Template search path.

Writing your own template tags and filters.

Additional manage.py commands.

Writing additional manage.py commands.

Multiple databases.

Non-SQL databases.

Using legacy databases.

Shortcuts.

Generic views.

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 17 / 18

Further reading

More information

http://docs.djangoproject.com/

http://groups.google.com/group/django-users

http://pypi.python.org/pypi/virtualenv

http://www.python.org/dev/peps/pep-0370/

And, of course, http://python.org/

Bill Freeman (PySIG NH) Introduction to Django September 23, 2010 18 / 18

http://docs.djangoproject.com/
http://groups.google.com/group/django-users
http://pypi.python.org/pypi/virtualenv
http://www.python.org/dev/peps/pep-0370/
http://python.org/

	Incoming
	Presentation
	Object Relational Mapper
	Things you don't have to write for yourself.
	Odds and ends
	Further reading

